Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides).

Identifieur interne : 001C91 ( Main/Exploration ); précédent : 001C90; suivant : 001C92

Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides).

Auteurs : Kennedy F. Rubert-Nason [États-Unis] ; John J. Couture ; Ian T. Major ; C Peter Constabel ; Richard L. Lindroth

Source :

RBID : pubmed:26099738

Descripteurs français

English descriptors

Abstract

Numerous studies have explored the impacts of intraspecific genetic variation and environment on the induction of plant chemical defenses by herbivory. Relatively few, however, have considered how those factors affect within-plant distribution of induced defenses. This work examined the impacts of plant genotype and soil nutrients on the local and systemic phytochemical responses of trembling aspen (Populus tremuloides) to defoliation by gypsy moth (Lymantria dispar). We deployed larvae onto foliage on individual tree branches for 15 days and then measured chemistry in leaves from: 1) branches receiving damage, 2) undamaged branches of insect-damaged trees, and 3) branches of undamaged control trees. The relationship between post-herbivory phytochemical variation and insect performance also was examined. Plant genotype, soil nutrients, and damage all influenced phytochemistry, with genotype and soil nutrients being stronger determinants than damage. Generally, insect damage decreased foliar nitrogen, increased levels of salicinoids and condensed tannins, but had little effect on levels of a Kunitz trypsin inhibitor, TI3. The largest damage-mediated tannin increases occurred in leaves on branches receiving damage, whereas the largest salicinoid increases occurred in leaves of adjacent, undamaged branches. Foliar nitrogen and the salicinoid tremulacin had the strongest positive and negative relationships, respectively, with insect growth. Overall, plant genetics and environment concomitantly influenced both local and systemic phytochemical responses to herbivory. These findings suggest that herbivory can contribute to phytochemical heterogeneity in aspen foliage, which may in turn influence future patterns of herbivory and nutrient cycling over larger spatial scales.

DOI: 10.1007/s10886-015-0600-z
PubMed: 26099738


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides).</title>
<author>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA, rubert@entomology.wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Couture, John J" sort="Couture, John J" uniqKey="Couture J" first="John J" last="Couture">John J. Couture</name>
</author>
<author>
<name sortKey="Major, Ian T" sort="Major, Ian T" uniqKey="Major I" first="Ian T" last="Major">Ian T. Major</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26099738</idno>
<idno type="pmid">26099738</idno>
<idno type="doi">10.1007/s10886-015-0600-z</idno>
<idno type="wicri:Area/Main/Corpus">001C49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001C49</idno>
<idno type="wicri:Area/Main/Curation">001C49</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001C49</idno>
<idno type="wicri:Area/Main/Exploration">001C49</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides).</title>
<author>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Entomology, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA, rubert@entomology.wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Entomology, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Couture, John J" sort="Couture, John J" uniqKey="Couture J" first="John J" last="Couture">John J. Couture</name>
</author>
<author>
<name sortKey="Major, Ian T" sort="Major, Ian T" uniqKey="Major I" first="Ian T" last="Major">Ian T. Major</name>
</author>
<author>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="eISSN">1573-1561</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Moths (growth & development)</term>
<term>Moths (physiology)</term>
<term>Nitrogen (analysis)</term>
<term>Nitrogen (metabolism)</term>
<term>Phytochemicals (analysis)</term>
<term>Phytochemicals (genetics)</term>
<term>Phytochemicals (metabolism)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (chemistry)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Soil (chemistry)</term>
<term>Tannins (analysis)</term>
<term>Tannins (genetics)</term>
<term>Tannins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Azote (analyse)</term>
<term>Azote (métabolisme)</term>
<term>Composés phytochimiques (analyse)</term>
<term>Composés phytochimiques (génétique)</term>
<term>Composés phytochimiques (métabolisme)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Génome végétal (MeSH)</term>
<term>Herbivorie (MeSH)</term>
<term>Papillons de nuit (croissance et développement)</term>
<term>Papillons de nuit (physiologie)</term>
<term>Populus (composition chimique)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Sol (composition chimique)</term>
<term>Tanins (analyse)</term>
<term>Tanins (génétique)</term>
<term>Tanins (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Nitrogen</term>
<term>Phytochemicals</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Soil</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Phytochemicals</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Azote</term>
<term>Composés phytochimiques</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Sol</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Composés phytochimiques</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nitrogen</term>
<term>Phytochemicals</term>
<term>Tannins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Composés phytochimiques</term>
<term>Tanins</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Papillons de nuit</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Moths</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Genome, Plant</term>
<term>Herbivory</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Génome végétal</term>
<term>Herbivorie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Numerous studies have explored the impacts of intraspecific genetic variation and environment on the induction of plant chemical defenses by herbivory. Relatively few, however, have considered how those factors affect within-plant distribution of induced defenses. This work examined the impacts of plant genotype and soil nutrients on the local and systemic phytochemical responses of trembling aspen (Populus tremuloides) to defoliation by gypsy moth (Lymantria dispar). We deployed larvae onto foliage on individual tree branches for 15 days and then measured chemistry in leaves from: 1) branches receiving damage, 2) undamaged branches of insect-damaged trees, and 3) branches of undamaged control trees. The relationship between post-herbivory phytochemical variation and insect performance also was examined. Plant genotype, soil nutrients, and damage all influenced phytochemistry, with genotype and soil nutrients being stronger determinants than damage. Generally, insect damage decreased foliar nitrogen, increased levels of salicinoids and condensed tannins, but had little effect on levels of a Kunitz trypsin inhibitor, TI3. The largest damage-mediated tannin increases occurred in leaves on branches receiving damage, whereas the largest salicinoid increases occurred in leaves of adjacent, undamaged branches. Foliar nitrogen and the salicinoid tremulacin had the strongest positive and negative relationships, respectively, with insect growth. Overall, plant genetics and environment concomitantly influenced both local and systemic phytochemical responses to herbivory. These findings suggest that herbivory can contribute to phytochemical heterogeneity in aspen foliage, which may in turn influence future patterns of herbivory and nutrient cycling over larger spatial scales.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26099738</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>05</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-1561</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>41</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides).</ArticleTitle>
<Pagination>
<MedlinePgn>651-61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-015-0600-z</ELocationID>
<Abstract>
<AbstractText>Numerous studies have explored the impacts of intraspecific genetic variation and environment on the induction of plant chemical defenses by herbivory. Relatively few, however, have considered how those factors affect within-plant distribution of induced defenses. This work examined the impacts of plant genotype and soil nutrients on the local and systemic phytochemical responses of trembling aspen (Populus tremuloides) to defoliation by gypsy moth (Lymantria dispar). We deployed larvae onto foliage on individual tree branches for 15 days and then measured chemistry in leaves from: 1) branches receiving damage, 2) undamaged branches of insect-damaged trees, and 3) branches of undamaged control trees. The relationship between post-herbivory phytochemical variation and insect performance also was examined. Plant genotype, soil nutrients, and damage all influenced phytochemistry, with genotype and soil nutrients being stronger determinants than damage. Generally, insect damage decreased foliar nitrogen, increased levels of salicinoids and condensed tannins, but had little effect on levels of a Kunitz trypsin inhibitor, TI3. The largest damage-mediated tannin increases occurred in leaves on branches receiving damage, whereas the largest salicinoid increases occurred in leaves of adjacent, undamaged branches. Foliar nitrogen and the salicinoid tremulacin had the strongest positive and negative relationships, respectively, with insect growth. Overall, plant genetics and environment concomitantly influenced both local and systemic phytochemical responses to herbivory. These findings suggest that herbivory can contribute to phytochemical heterogeneity in aspen foliage, which may in turn influence future patterns of herbivory and nutrient cycling over larger spatial scales.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Rubert-Nason</LastName>
<ForeName>Kennedy F</ForeName>
<Initials>KF</Initials>
<AffiliationInfo>
<Affiliation>Department of Entomology, University of Wisconsin, 1630 Linden Dr., Madison, WI, 53706, USA, rubert@entomology.wisc.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Couture</LastName>
<ForeName>John J</ForeName>
<Initials>JJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Major</LastName>
<ForeName>Ian T</ForeName>
<Initials>IT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Constabel</LastName>
<ForeName>C Peter</ForeName>
<Initials>CP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>06</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064209">Phytochemicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012987">Soil</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013634">Tannins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064209" MajorTopicYN="N">Phytochemicals</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012987" MajorTopicYN="N">Soil</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013634" MajorTopicYN="N">Tannins</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>06</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2015</Year>
<Month>06</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>6</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>5</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26099738</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-015-0600-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Mar;185(4):893-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20015067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2004 Mar;139(1):55-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14740291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2002 Feb;130(4):585-593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28547261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2007 Jun;10(6):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17498148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1989 Jun;5(2):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(2):410-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25952793</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Nov;188(3):787-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20955416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Aug 22;4:324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23986767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2011 Sep;72(13):1497-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21376356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Mar;38(3):306-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22430845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Sep;145(2):298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15959818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Jun;46(3):347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11488481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jun;150(2):924-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19395405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Mar;93(3):452-456</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Jul;27(7):1289-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11504029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 May;135(1):496-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15133153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2014 Feb;40(2):150-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24496605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2012 Nov;7(11):1498-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22960757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 1999 May;14(5):179-185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1980 Sep-Oct;28(5):947-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7462522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2013 Oct;39(10):1301-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24154955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1991 May;86(3):408-413</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Jul;167(1):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15948838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Mar;146(3):888-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18024557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Aug;183(3):740-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19566812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Econ Entomol. 2009 Jun;102(3):1070-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19610421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Mar;88(3):729-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17503600</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Constabel, C Peter" sort="Constabel, C Peter" uniqKey="Constabel C" first="C Peter" last="Constabel">C Peter Constabel</name>
<name sortKey="Couture, John J" sort="Couture, John J" uniqKey="Couture J" first="John J" last="Couture">John J. Couture</name>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
<name sortKey="Major, Ian T" sort="Major, Ian T" uniqKey="Major I" first="Ian T" last="Major">Ian T. Major</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Rubert Nason, Kennedy F" sort="Rubert Nason, Kennedy F" uniqKey="Rubert Nason K" first="Kennedy F" last="Rubert-Nason">Kennedy F. Rubert-Nason</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26099738
   |texte=   Influence of Genotype, Environment, and Gypsy Moth Herbivory on Local and Systemic Chemical Defenses in Trembling Aspen (Populus tremuloides).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26099738" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020